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Coherent dynamics in stochastic systems revealed by full counting statistics
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Stochastic systems feature, in general, both coherent dynamics and incoherent transitions between different
states. We propose a method to identify the coherent part in the full counting statistics for the transitions. The
proposal is illustrated for electron transfer through a quantum-dot spin valve, which combines quantum-coherent
spin precession with electron tunneling. We show that by counting the number of transferred electrons as a
function of time, it is possible to distill out the coherent dynamics from the counting statistics even in transport
regimes, in which other tools such as the frequency-dependent current noise and the waiting-time distribution
fail.
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I. INTRODUCTION

In a stochastic process, the evolution of a system is described
in terms of random events [1]. A generic example is the
tunneling of electrons into and out of quantum dots coupled
to electron reservoirs. During the time between two tunneling
events, the quantum-dot state undergoes a quantum-coherent
evolution. A fast coherent evolution (as compared to the rate
of tunneling) may easily dominate the overall dynamics of
the system. In the opposite limit, the probabilistic nature of
incoherent tunneling prevails and it may seem a hopeless task
to detect features of the coherent dynamics by just counting
the number of tunneled electrons as a function of time. In
this paper, however, we propose a method based on full
counting statistics to distill out the contributions stemming
from coherent evolution.

To illustrate our proposal we choose as an example a
quantum-dot spin valve (see Fig. 1). It consists of a single-level
quantum dot attached to two ferromagnetic leads with non-
collinear magnetization directions. Quantum-dot spin valves
have been realized experimentally with metallic nanoparticles
[2–4], semiconductor quantum dots [5], and molecules [6] as
well as in InAs nanowires [7] and carbon nanotubes [8,9].
An applied bias voltage yields a finite polarization of the
quantum-dot spin. The coupling of the quantum-dot level to
ferromagnetic leads generates an exchange field that gives
rise to a coherent Larmor precession of the accumulated spin
[10,11]. The relative orientation of the quantum-dot spin and
the magnetization of the drain electrode affect the probability
for the electron to tunnel out. Therefore, the coherent spin
dynamics influences the incoherent tunneling transport. A
time-resolved monitoring of the individual tunneling events
can be achieved by electrostatically coupling the quantum
dot to a quantum point contact [12–17] or a single-electron
transistor [18,19]. Such a coupling is spin insensitive and does
not, therefore, affect the coherent spin dynamics.
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Suppose that transport follows a fully deterministic cycle in
which a majority-spin electron enters from the source electrode
into the quantum dot, precesses with Larmor frequency in the
exchange field by an azimuthal angle of π (such that the relative
angle between the quantum-dot spin and the majority-spin
direction of the drain electrode is minimized), leaves to the
drain electrode, and, thereafter, immediately the next electron
enters from the source. Consequently, the coherent dynam-
ics would be directly visible in the sequence of equidistant
charge-transfer events occurring with Larmor frequency. The
probabilistic nature of incoherent tunneling events, however,
destroys this regular pattern. One reason is that the instant
of time at which the precession starts depends on how long
the quantum dot remains empty before an electron tunnels
in. This disturbing factor can be eliminated by correlating
tunneling events to each other, e.g., by studying either the
waiting-time distribution [20–25] or the frequency-dependent
current-current correlator [26,27]. Both methods, however, still
suffer from the fact that with some probability also minority
spins may tunnel in and, furthermore, that tunneling out occurs
also for nonoptimal angles between quantum-dot spin and
drain magnetization direction. The reliability of both methods
is restricted to relatively strong lead polarizations for resolving
spin precession in quantum-dot spin valves.

In this paper, we propose an approach that is qualitatively
different from analyzing correlators. Instead, we suggest to
simply average over the number N of transferred electrons in
a time interval of length t , including a weighting factor sN for
the measured transfer probabilities PN (t),

〈N〉s(t) :=
∑∞

N=0 NsNPN (t)∑∞
N=0 sNPN (t)

. (1)

Note that 〈N〉1(t) is the total number of transferred electrons.
It increases linearly in time and displays no signatures of spin
precession. For s > 0, 〈N〉s(t) has been successfully applied
to study dynamical phase transitions, e.g., in structural glass
formers [28] or optical systems [29].

The weighting factor sN introduced in Eq. (1) has dramatic
consequences for s〈0. Then, a regular pattern of divergencies
in 〈N〉s(t), separated in time by π/�, which is approximately
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FIG. 1. Electron transfer through a quantum-dot spin valve: an
electron tunnels in from the left lead, precesses about the exchange
field B, and then tunnels out to the right lead. A coupled quantum-
point contact (QPC) or single-electron transistor (SET) measures the
electron occupation of the quantum dot.

half of the period of the spin precession, is observed. It, thus,
appears that the weighting factor tends to distill out the con-
tributions relevant for the coherent dynamics. Quantitatively,
this method works for a much larger parameter range than
the analysis of waiting times or current-current correlators. In
practice, it remains to measure the probability distribution with
sufficient precision as discussed in Sec. III C.

II. MODEL AND METHOD

The quantum-dot spin valve is described by the Hamilto-
nianH = Hdot + ∑

r=L,R Hr + Htun. The quantum dotHdot =
ε
∑

σ nσ + Un↑n↓ hosts a single, spinful level. Its energy ε

can be tuned by a gate voltage. The corresponding number
operator is nσ = d†

σ dσ where the fermionic operator d†
σ (dσ )

creates (annihilates) an electron with spin σ (with respect to
some arbitrarily chosen spin-quantization axis). The charging
energy for double occupation of the quantum dot is denoted
by U . The ferromagnetic leads are described as reservoirs of
noninteracting electrons Hr = ∑

kσ εkσ a
†
rkσ arkσ , held at elec-

trochemical potential μL = eV/2 and μR = −eV/2. Here,
the spin-quantization axes are chosen along the respective
magnetization direction nr (enclosing an angle φ) such that
the operator a

†
rkσ (arkσ ) creates (annihilates) an electron with

momentum k and majority (σ = +) or minority (σ = −) spin.
The degree of spin polarization pr = (νr+ − νr−)/(νr+ + νr−)
of lead r is characterized by the spin-dependent density of
states νrσ taken at the Fermi energy. In the following, we
assume that the leads are made of the same material such that
pL = pR = p.

The tunneling Hamiltonian reads as Htun =∑
rkσσ ′ trσσ ′d†

σ arkσ ′ + H.c., with matrix elements trσσ ′ =
tr〈σ |σ ′〉r that separate into the spin-independent bare
tunneling amplitudes tr and the overlap factors 〈σ |σ ′〉r
accounting for different quantization axes in the quantum
dot and lead r . We define the tunnel-coupling strength
	r± = 2π |tr |2νr± = (1 ± pr )	r with 	r = (	r+ + 	r−)/2
as well as 	 = 	L + 	R. Finally, the asymmetry
a = (	L − 	R)/	 measures the difference of the coupling
strengths to the left and right leads.

We assume the dot level to be well inside the energy window
provided by the transport voltage −eV/2 < ε < eV/2, and
the energy to add a second electron outside eV/2 < ε + U . At
low temperature, kBT � eV , the quantum dot can, then, be
either empty or singly occupied, and electron transport only

FIG. 2. |〈N〉s(t)| as a function of time for s = 1, − 0.7, and
−0.9. A regular peak pattern with peak-to-peak distance π/� occurs
for negative s, where � is approximatively given by the Larmor
frequency |B|of the exchange field. Parameters arep = 0.3,φ = π/2,
ε = U/3, eV = 13U/6, kBT = U/30, and a = 0.8.

occurs from the left lead through the dot to the right lead,
while tunneling in the opposite direction can be neglected.

We calculate

〈N〉s(t) = s
∂ lnMs(z,t)

∂z

∣∣∣∣
z=0

(2)

by making use of the generalized-factorial-moment gen-
erating function Ms(z,t) = ∑∞

N=0(z + s)NPN (t). Follow-
ing along the lines of Refs. [30,31], the latter is cal-
culated from Ms(z,t) = eT exp(Wz+s t)ρstat, where ρstat =
(ρ00

stat,ρ
↑↑
stat,ρ

↓↓
stat,ρ

↑↓
stat,ρ

↓↑
stat)

T is the vector of matrix elements of
the stationary quantum dot’s reduced density matrix obtained
from W1ρstat = 0 and eT ρstat = 1 with eT = (1,1,1,0,0). The
explicit form of the generator Wz is given in Appendix A.
The matrix elements ρ00

stat, ρ
↑↑
stat , and ρ

↓↓
stat denote the probability

to find the quantum dot empty or singly occupied with spin
↑ or ↓, respectively. The remaining ones, ρ

↑↓
stat = (ρ↓↑

stat)
∗
,

describe coherent superpositions. Other matrix elements are
exponentially suppressed in the considered transport regime.

The finite spin polarization p of the leads enters Wz in two
ways. First, it affects the rate for tunneling in from the left
and tunneling out to the right lead. Second, it gives rise to an
exchange field [10,11] that is (up to a factor gμB) given by

B =
∑

r

p	r

2π
[�(ε + U − μr ) − �(ε − μr )]nr , (3)

where �(x) = Re ψ( 1
2 + i x

2πkBT
) is the real part of the

digamma function ψ . The exchange field leads to the coherent
precession of the quantum-dot spin that we want to detect by
full counting statistics.

III. RESULTS

A. Full counting statistics

In Fig. 2, we depict |〈N〉s(t)| for s = 1, −0.7, −0.9 and
weakly polarized leads, p = 0.3 (as for Ni). Other parameters
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are ε = U/3, eV = 13U/6, kBT = U/30. Counting the num-
ber of transferred electrons without weighting factor 〈N〉1(t)
trivially yields a linear time dependence (blue line). The
behavior of |〈N〉s(t)| for values of s < 0 is strikingly different.
It shows a periodic sequence of very sharp divergencies with
a peak-to-peak distance π/� that is independent of s [up to a
term ∝O(p3) that becomes also s independent for |s| � 1].
This periodic pattern reflects the Larmor precession of the
quantum-dot spin in the exchange field. The strikingly clear
signature is remarkable in at least two respects. First, we
note that the shown time interval allows for only 4 Larmor
precessions of angle π each, but about 14 electrons have
been transferred through the quantum dot in total. This means
that the incoherent part of the dynamics dominates over the
coherent part. Nevertheless, the weighting factors are able to
distill out the coherent evolution. Second, we emphasize that
〈N〉s(t) is an average value over all possible realizations, in
particular, over all initial quantum-dot states, i.e., it is not
necessary to prepare the quantum dot in a specific initial state.

The divergencies of 〈N〉s(t) are connected to the positions
of the zeros zj (t) of M1(z,t) in the complex plane via the
expansion [31]

〈N〉s(t) =
∑

j

s

s − 1 − zj (t)
. (4)

The positions of zj (t) at time t = 61/	 are shown in Fig. 3(a).
There are complex-conjugated pairs of zeros (blue in Fig. 3).
Their appearance is well known for systems whose tunneling
dynamics is correlated by the presence of Coulomb interaction
[30,32,33] or superconducting correlations [31,34,35]. In addi-
tion, there are real-valued zeros shown as black dots in Fig. 3.
Their evolution with time is shown in Fig. 3(b). The zeros
aggregate near z = −1, but periodically with time separation
π/� an additional zero approaches quickly from z = −∞.
Once this additional zero passes the position z = s − 1, the
denominator in Eq. (4) vanishes and 〈N〉s(t) diverges.

If we restrict the summation in Eq. (4) to the black zeros, we
find an almost stepwise increase of the number of transferred
electrons 〈N〉1(t) with step-to-step distance π/� (not shown
here). This means that the stochastic system under investigation

FIG. 3. (a) Position of the zeros zj (t) of M1(z,t) in the complex
plane for 	t = 61. Complex-valued zeros (blue dots) witness the
presence of Coulomb interaction in the system. Real-valued zeros
(black dots) indicate the presence of Larmor precession. 〈N〉−0.7 and
〈N〉−0.9 diverge when a real-valued zero crosses the points marked
by a red and green cross, respectively. (b) Position of the real-valued
zeros (black dots) as a function of time. Other parameters are as in
Fig. 2.

can be decomposed into a deterministic coherent part (black
zeros) and a stochastic incoherent one (blue zeros). Introducing
the weighting factor sN effectively amounts to distilling out the
coherent dynamics.

B. Comparison with waiting times and Fano factor

In order to demonstrate the power of our proposed method,
we compare it to two alternative ways to detect coherent spin
precession in a quantum-dot spin valve.

First, in the distribution w(τ ) of waiting times τ between
subsequent tunneling-in and -out events, the precession leads to
an oscillation as function of τ , whose presence is deducible via
a maximum in the Fourier decomposition. Such an oscillation
is illustrated by the blue line in Fig. 4(a). Second, the current
noise indicates the coherent spin precession via a maximum in
the finite-frequency Fano factor S(ω)/2〈I 〉 as a function of the

FIG. 4. (a) Waiting-time distribution and (b) finite-frequency Fano factor for two different choices for p and asymmetry a, depicted in Fig. 5
by a triangle (blue curves) and a dot (yellow curves). Other parameters are as in Fig. 2.
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FIG. 5. Comparison of different detection tools for spin preces-
sion as a function of the leads’ polarizations p and the asymmetry a

of the tunnel couplings to the leads. Other parameters are as in Fig. 2.
Above the blue, red, and green lines, waiting times, Fano factors, and
〈N〉s(t) are useful tools, respectively. Obviously, 〈N〉s(t) provides the
largest area of application. Below the dashed black line, 〈N〉s(t) shows
divergencies with an s-dependent peak-to-peak distance, which are
not connected to spin precession. The black dot, square, and triangle
marks the values for p and a used in Figs. 4, 6, and 7.

frequency ω. The blue and yellow curves in Fig. 4(b) illustrate
this particular maximum.

The comparison of the different detection methods is shown
in Fig. 5. Coherent spin dynamics dominates over the incoher-
ent parts for large spin polarization p ≈ 1 and large asymmetry
a ≈ 1 (upper right corner of Fig. 5). In this regime, �−1 > 	R

such that complete spin precessions occur most likely before
a phase-destroying, incoherent tunneling event happens. With
decreasing p and a, typically incoherent tunneling destroys
the coherences before the spin precession by an angle π .
As a result, the waiting-time distribution can detect the spin
precessions only for extreme values of p and a (above the
blue line). The finite-frequency Fano factor is somewhat more
robust (above the red line in Fig. 5). Remarkably, the area in
which 〈N〉s(t) displays periodic, s-independent divergencies
is much larger, extending to regions in which the dwell time
of the electrons is much smaller than �−1. For s = −0.7
and −∞ the generalized average particle number detects the
spin precessions above the purple and green lines in Fig. 5,
respectively. Below a � −0.5, the coherent spin precession is
suppressed due to the decoherence introduced by the tunnel
coupling to the right lead. This is modeled by the entry −	R

in the fourth and fifth diagonal matrix elements of Wz given in
Eq. (A1). Once the coherent spin precession is suppressed,
there is nothing left to be distilled out by introducing the
weighting factor.

Finally, we remark that the appearance of a divergency in
|〈N〉s(t)| is not always connected to coherent spin precession.
Below the dashed black line in Fig. 5, coherent spin precession
does not play any role for the transport of electrons, as can
be seen by inspecting the eigenvalue of Wz with the largest
real part. Nevertheless, 〈N〉s(t) exhibit divergencies periodic
in time (see Appendix B). Their peak-to peak distance is,

FIG. 6. |〈N〉s(t)| as a function of time for s = 1 (blue curve), −0.7
(red curve), and −0.9 (green curve). From (a) to (c), the precision dPN

of PN (t) increases and more peaks are resolved. The parameters are
as in Fig. 2, with polarization p and asymmetry a as for the dot in
Fig. 5.

however, not determined by the Larmor frequency |B|. In
contrast to the divergencies shown in Fig. 2, the peak-to-peak
distance strongly depends on s (it scales with

√|s|), and it is
independent of ε, U , and μr .

C. Statistical accuracy

The formula for 〈N〉s(t) [Eq. (1)] contains a series over N

of the probability distribution PN (t). Therefore, the accuracy
of 〈N〉s(t) calculated from experimentally measured data is
limited by the finite measurement time (which cuts the infinite
series into a finite sum) and the precision with which the prob-
ability distribution PN (t) can be experimentally determined.
In this section, we discuss how the value of s and, thus, the
weighting factor sN affects this accuracy.

For |s| > 1, the weighting factor favors contributions with
larger N . The convergence of the series is guaranteed as long
as PN falls off fast enough with N . The probabilities of a
Poisson distribution, for example, contain a prefactor 1/N!
that guarantees convergence, and the upper cutoff at which
the series can be practically terminated only grows linearly
with |s|, which does not pose a serious challenge for real
experiments.

A more severe issue is the precision of the measured
probability distribution PN (t). With increasing |s|, the value of
〈N〉s(t) is dominated by large-N probabilities PN that are small
and, therefore, difficult to resolve, which, in turn, reduces the
accuracy of 〈N〉s(t). The most accurate results are, therefore,
expected for small |s|. For s = 0, on the other hand, the
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FIG. 7. |〈N〉s(t)| as a function of time for parameters a = −0.8
and p = 0.3 (corresponding to the square in Fig. 5). The other
parameters are as in Fig. 2 of the main text.

divergencies in 〈N〉s(t) that indicate the spin precession are
gone. This motivates the choices s = −0.7 and −0.9 in our
calculation.

To estimate the required precision of PN to resolve several
divergencies of 〈N〉s(t), we perform the following simula-
tion. After calculating PN (t) = ∂N

z M0(z,t)|z=0/N! from the
moment-generating functionM0(z,t), we artificially introduce
an error by rounding the obtained PN to the nearest multiple of
a chosen precision dPN . The result for 〈N〉s(t) for parameters
as in Fig. 2 is shown in Fig. 6. We see that by improv-
ing the precision dPN , more and more divergencies can be
resolved.

IV. CONCLUSIONS

We propose a method to detect coherent dynamics in
stochastic processes, particularly the coherent spin precession
in a quantum-dot spin valve. Full counting statistics of the
number of transferred electrons as function of time is utilized
to distill out the coherent part out of the statistics that is
predominantly probabilistic incoherent in nature. The key idea
is to introduce a weighting factor sN when calculating the
average number 〈N〉s(t) of transferred electrons. For s < 0,
coherent precession due to an exchange field is detectable by
a periodic appearance of divergencies in 〈N〉s(t). The peak-
to-peak distance π/� is approximatively determined by the
Larmor frequency � ≈ |B|. Our proposal works for wide range
of polarizations and asymmetries of the tunnel couplings. In
particular, it allows to use weakly polarized ferromagnets such
as Ni alloys and can be applied even if alternative tools such
as finite-frequency current noise and waiting-time distribution
fail. An experimental proof of the concept seems well in reach
with recent experimental setups.
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APPENDIX A: EXPLICIT FORM OF THE GENERATOR Wz

As outlined in the main text, the generalized-factorial-
moment-generating function Ms(z,t) can be calculated from
the generator Wz. To write the latter explicitly, we choose the
spin quantization axis along the magnetization direction of the
left (source) electrode [any other choice leads to a different Wz

but, of course, results in the same Ms(z,t)]. We find

Wz =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2	L z(1 + p cos φ)	R z(1 − p cos φ)	R izp	R sin φ −izp	R sin φ

(1 + p)	L −(1 + p cos φ)	R 0 BR−ip	R

2 sin φ
BR+ip	R

2 sin φ

(1 − p)	L 0 −(1 − p cos φ)	R
−BR−ip	R

2 sin φ
−BR+ip	R

2 sin φ

0 −BR+ip	R

2 sin φ
BR+ip	R

2 sin φ −	R + i(BL + BR cos φ) 0
0 −BR−ip	R

2 sin φ
BR−ip	R

2 sin φ 0 −	R − i(BL + BR cos φ)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A1)

Here, Br = p	r

2π
[�(ε + U − μr ) − �(ε − μr )] is the magnitude of the contribution to the exchange field that is generated by

r = L,R. The first three columns describe transitions where the initial state is the quantum dot being empty, singly occupied with
spin ↑, and singly occupied with spin ↓, respectively. For the fourth and fifth columns, the initial state is a coherent superposition
of spin ↑ and ↓. The fact that the counting field z appears only in the first row indicates that we count those tunneling events
where an electron is leaving the quantum dot to the right lead.

APPENDIX B: ESTIMATE OF THE PEAK-TO-PEAK DISTANCE OF THE DIVERGENCIES

To estimate the period with which the divergencies of 〈N〉s(t) appear, we analyze the eigenvalues of Wz. In order to get compact
and transparent explicit expressions, we concentrate on the limit of large |s|, i.e., we expand the eigenvalues in orders of 1/|z|.
The leading contributions are

λ1 = −	R + 	R(BL + BR)(BL cos φ + BR)(1 + cos φ)

|B|2 p2 + O(p4), (B1)
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λ2,3 = −	R + 	RBL(BL − BR) sin2 φ

2|B|2 p2 ± i|B| + O(p3), (B2)

λ4,5 = −	L − 	R + (1 − p2)	R

2(1 + p2 cos φ)
± i

√
−2	L	Rz(1 + p2 cos φ) . (B3)

The first eigenvalue is purely real while the others come (for negative z) as complex-conjugated pairs. The real part of all of the
eigenvalues is negative.

For times t � 1/	, the dynamics of the system is determined by only the eigenvalue λmax of Wz with the largest real part
(i.e., the one closest to 0). In the region above the green line in Fig. 5, the dominating eigenvalues are λ2 and λ3. Their imaginary
part is given by the Larmor frequency |B|, independent of z. This explains the periodicity of the divergencies of 〈N〉s(t).

In the region below the black dashed line in Fig. 5, the dominating eigenvalues are λ4 and λ5. They also have some finite
imaginary part, but this time we get oscillations with frequency

√
−2	L	Rs(1 + p2 cos φ) that are not associated with Larmor

precession. In particular, this frequency depends on s, as depicted in Fig. 7.
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